

Smart, Dynamic Microgrids

Tools for resilience, economics, and sustainability Michael T. Burr

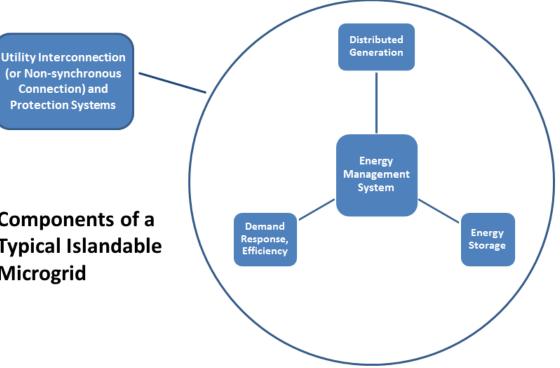
Maryland Clean Energy Summit / Oct. 16, 2013

Note: This presentation has been modified from the original in the following ways: (1) Topical material was brought to the front; (2) The title was changed from the original, "Utility 2.0 and Dynamic Microgrids," to clearly distinguish it from the article "Utility 2.0 and the Dynamic Microgrid," co-authored by Mani Vadari and Gerry Stokes. As a dynamic component of an engineered smart grid, a microgrid becomes a major asset for the utility of the future.

CENTRAL POWER PLANT

definition*: Microgrid

A local energy system capable of balancing captive supply and demand resources to maintain stable service within a defined boundary.


Microgrids are **defined by their function**, not their size.

Microgrids combine various distributed energy resources (DER) to form a whole system that's greater than its parts.

Most microgrids can be further described by one of three categories:

- Isolated microgrids, including those on islands and at remote inland sites, not *connected* to a local utility.
- Islandable microgrids that are fully interconnected and capable of both consuming and supplying grid power, but can also maintain some level of service during a utility outage.
- Non-synchronous microgrids are connected ٠ to utility power supplies, but they aren't interconnected or synchronized to the grid. Such non-synchronized microgrids are capable of consuming power from the grid, but they aren't capable of supplying it.

Components of a **Typical Islandable** Microgrid

*Source: Microgrid Institute www.microgridinstitute.org

Microgrid Drivers in Industrialized Markets

"Supply Surety"[†] especially at mission-critical and outage-sensitive facilities

- Military and government installations
- Institutional campuses (universities, hospitals, prisons)
- C&I sites (data centers, corporate campuses, factories, processing plants)
- Communities that repeatedly endure extended outages (NE, Florida, etc.)

+ Government agencies and laboratories in the U.S. use the terms "surety" and "assurance" in describing energy supply priorities. Related engineering and regulatory concepts involve resilience, reliability, and power quality.

► Social Policy

Environmental liability, jobs/economic development in various jurisdictions – states, cities, and economic development zones

- Renewable mandates
- Environmental constraints
- Sustainable/domestic fuel preferences
- Local self-reliance

► Transmission congestion Siting challenges, load pockets, least-cost regional planning

Economic competitiveness

vs. high-cost utility power. Where DG is near grid parity, microgrids can optimize capacity and add value.

Dynamic Grid: A work in progress

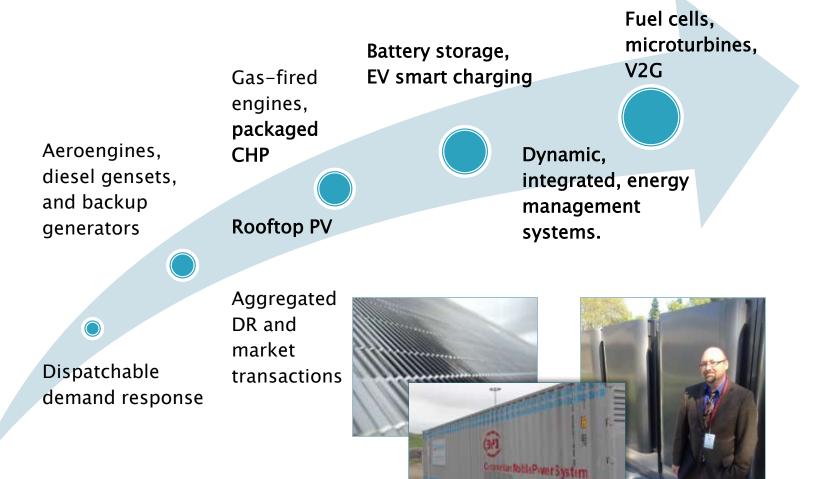
DA and SCADA	Smart Grid	Dynamic Grid
Early distribution automation and SCADA systems brought modern information technology, switching, and communications systems onto the electric grid for the first time.	Technology standards and common information models accelerated smart grid development. AMI allows advanced demand response and efficiency applications. Outage management systems bring new "self-healing" capabilities.	Systems engineered with smart grid technologies bring greater flexibility and resilience. Automatic reconfiguring systems bring microgrid architecture to the macro grid. Smart switching and distributed intelligence allows dynamic microgrid

islanding and DG exploitation.

Dynamic Microgrids

"Dynamic microgrids have the potential to be a key element of the ultimate selfhealing grid – the Holy Grail of the smart grid. They allow the grid [during an outage or adverse event] to divide itself into smaller self-sustaining grids, which can then be stitched back to form the regular distribution grid."

-Mani Vadari, Modern Grid Solutions (forthcoming article in Public Utilities Fortnightly, November 2013)


Dynamic Microgrid: A work in progress

Backup Power Systems	Islandable Microgrids	Dynamic Microgrids
Diesel/gas backup power systems are rudimentary microgrids. Their primary function is to provide supply surety for host facilities. Utility tariffs for interruptible power brought added value for backup power systems.	Microgrid technologies bring together DR, storage, and DG with the capability to operate in isolation. Demand-side technologies reduce overall energy costs and improve service levels during island operation. Utilities begin planning for microgrids.	As part of a planned smart grid, microgrids bring greater resilience and faster outage restoration. Advanced microgrids bring voltage support and dispatchable load and generation. Non-transmission alternatives (NTA) defer high-voltage transmission costs.
		Utilities develop the

dynamic grid.

DG Technology Trajectory

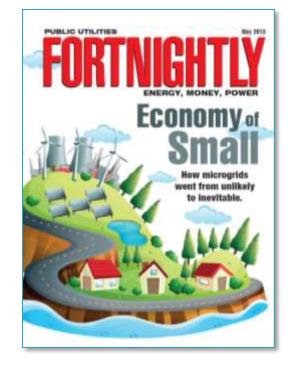
Manufacturing scale economics vs. system scale economics

Microgrid Regulation & Markets: More works in progress

Regulation	Customers	Finance
Outdated and discriminatory standards Disincentives in utility revenue models. Inadequate and unclear policy treatment.	Resistance to adopt new energy technologies. Short memory and low budget for perceived "premium" energy services. Distrust of upstart/non- utility energy companies.	Complex commercial arrangements. Perceived technology risk. Regulatory barriers = complicate financing structures. Institutional resistance = increased risk for investors.
		for investors.

For more information ...

"Economy of Small: How DG and Microgrids Change the Game for Utilities," by Michael T. Burr, *Public Utilities Fortnightly,* May 2013 http://ow.ly/mZczd


Follow our social media feeds

Freddit Microgrid Subreddit http://www.reddit.com/r/microgrid

DG/DR/DER Subreddit http://www.reddit.com/r/DGDR/

RSS http://www.reddit.com/r/microgrid.rss

How to reach me

Michael T. Burr

Director, Microgrid Institute mtburr@microgridinstitute.org www.microgridinstitute.org

Connect with me on LinkedIn

