

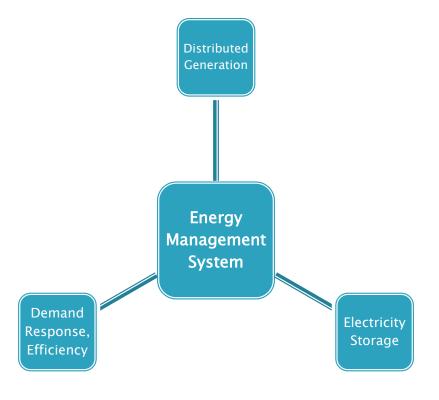
Microgrids 101

Driving forces and barriers for microgrids in the U.S.

Michael T. Burr

Energy Bar Association - "Microgrids 101" webinar / Sept. 25, 2013

definition*: Microgrid


A local energy system capable of balancing captive supply and demand resources to maintain stable service within a defined boundary.

Microgrids are **defined by their function**, not their size.

Microgrids combine various distributed energy resources (DER) to form a whole system that's greater than its parts.

Most microgrids can be further described by one of three categories:

- Isolated microgrids, including those on islands and at remote inland sites, not connected to a local utility.
- Islandable microgrids that are fully interconnected and capable of both consuming and supplying grid power, but can also maintain some level of service during a utility outage.
- Asynchronous microgrids are connected to utility power supplies, but they aren't *inter*connected or synchronized to the grid. Such non-synchronized microgrids are capable of consuming power from the grid, but they aren't capable of supplying it.

*Source: Microgrid Institute www.microgridinstitute.org

Microgrids can use almost any form of energy supply.

The key to making a microgrid work is the ability to balance demand against available supply in real time and thereby maintain service that's adequately stable and sufficient *for the host's purposes.*

Not all microgrids must provide service levels equivalent to modern utility service. In fact *most will not.*

Microgrid Technologies and Resources

- Gas or diesel cogeneration
- Fuel cells and microturbines
- Photovoltaic (PV) modules
- Wind, biomass, small hydro
- Efficiency, conservation, and demand response capabilities
- Electricity storage
- Energy management and automation systems

Microgrid Drivers in Industrialized Markets

- ► "Supply Surety"†
 especially at mission-critical
 and outage-sensitive facilities
- Military and government installations
- Institutional campuses (universities, hospitals, prisons)
- C&I sites (data centers, corporate campuses, factories, processing plants)
- Communities that repeatedly endure extended outages (NE, Florida, etc.)

† Government agencies and laboratories in the U.S. use the terms "surety" and "assurance" in describing energy supply priorities. Related engineering and regulatory concepts involve resilience, reliability, and power quality.

► Social Policy

Environmental liability, jobs/economic development in various jurisdictions – states, cities, and economic development zones

- Renewable mandates
- Environmental constraints
- Sustainable/domestic fuel preferences
- Local self-reliance

► Transmission congestion

Siting challenges, load pockets, least-cost regional planning

▶ Economic competitiveness

vs. high-cost utility power. Where DG is near grid parity, microgrids can optimize capacity and add value.

Distributed Energy Resources Trajectory

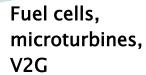
Distributed Effergy Resources Trajectory						
~Timeframe:	1980s-Present	2000s-Present	2010-Present	Present-2020+	2015+	
	Self-Generation	Demand Response	Distributed Generation	Microgrids	Transactional Energy	
Technology	Aeroderivative turbines, cogeneration/CHP, diesel gensets, etc.	DR energy management systems, submetering, distributed controls, smart metering/ smart grid integration	Rooftop PV, microturbines, fuel cells, energy storage, smart inverters, smart grid integration	DR & DG technology, energy management software, distributed sensors and controls	<+ Advanced smart grid, distributed sensors and controls, retail energy exchange/market infrastructure	
Policy	PURPA, State IRP, etc.	EPAct 2005, FERC Order 2000 & 745, IRP & efficiency/ conservation policies	PURPA, EPAct, ARRA	In progress (FERC Order 1000 policy on non-transmission alternatives (NTA), ARRA, state policies)	Technical orgs are developing standards (GridWise, OpenADR, OASIS, SGIP)	
Contracting	Turnkey EPC, power purchase agreements (PPA)	Energy service contracting, aggregation, conservation service agreements,	DG PPAs, leasing	Microgrid service agreements	Energy service contracting, forward contracts	
Market Settlement	Bilateral trading, regional wholesale market settlement for energy and capacity	Regional market settlement	None (possibly regional market settlement for DR functionality)	None (possibly regional market settlement for DR and DG)	Bilateral contracting and trading, combined with spot- and forward-market bids and tenders	
Pricing & Tariffs	Interruptible rates, standby rates, and sometimes deferral rates to discourage self-generation	Dynamic rates, conservation/ efficiency incentives, locational marginal pricing (LMP)	Net-metering tariffs, standby rates, DG interconnection fees, and sometimes fixed-cost charges	In progress (derived from IPP, DR, and DG tariffs, plus FERC incentive tariffs for NTAs?)	Tariffs might be applicable for utility fixed cost service but TE model envisions market based pricing.	

Market Trajectory:

Increasing granularity in supply and demand assets and price signals

Order 2000, RTO/ISOs, locational pricing Order 1000,
Order 745,
capacity
markets, nodal
pricing,
demand
trading

Convergence in wholesale and retail markets; Emergence of transactional distributed energy networks


DG Technology Trajectory

Manufacturing scale economics vs. network scale economics

Aeroengines, diesel gensets, and backup generators Gas-fired engines, packaged cogen

Battery storage, EV smart charging

Small-scale wind chargers, PV modules, and battery storage for remote sites, officescale UPS

Microgrid Financing:

A work in progress

Site Host and Government Funding

Early-stage projects in industrialized markets are mostly financed by host institutions with government support.

Projects in developing countries are being financed with multilateral aid.

Private Equity

Microgrid portfolio financing through development companies and contractors, such as:

- Pareto Energy
- General Microgrids
- Microgrid Solar
- Horizon Energy
- Anbaric Power
- SAIC

Commercial Debt

Debt service met with combined revenue streams:

- Energy sales
- Renewable credits
- DR aggregation
- FERC NTA tariffs

Hybrid project financing will include tranches of host, government, and PE investment.

Sponsors pursue REIT and MLP structures.

Microgrid Regulation:

A work in progress

Netmetering tariffs

- Pressure rising to reduce netmetered energy payments and restrain growth of DER
- Interconnection policies and fees increasingly onerous and costly

Demand response policy

- Volumetric pricing and rate-base regulation discourages conservation and load shifting
- DR tariffs and ISO/RTO policies shifting to prohibit DR sales that are enabled by DG

Microgrid Regulation:

A work in progress (continued ...)

Retail franchise / service territory laws

- Franchised utilities challenge behind-the-meter energy transactions
- Microgrids seeking to serve multiple customers or even multiple premises face lawsuits and potential regulation as public utilities
- Energy development zones and community energy projects are nascent and their regulatory frameworks are still evolving

FERC 1000 NTA rules

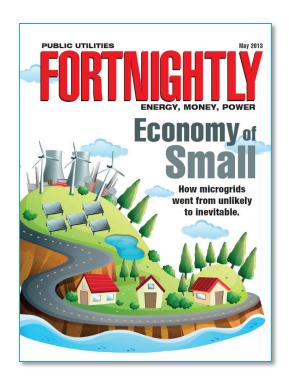
- •FERC Order 1000 opens the door to transmission incentive rates for microgrids and other non-transmission alternatives (NTA)
- No regulatory pathways currently exist for development, planning, and financing of NTAs

For more information ...

"Economy of Small: How DG and Microgrids Change the Game for Utilities," by Michael T. Burr, *Public Utilities Fortnightly*, May 2013

http://ow.ly/mZczd

Follow our social media feeds



http://www.reddit.com/r/microgrid

DG/DR/DER Subreddit http://www.reddit.com/r/DGDR/

RSS

http://www.reddit.com/r/microgrid.rss

How to reach me

Michael T. Burr

Director, Microgrid Institute mtburr@microgridinstitute.org www.microgridinstitute.org

Connect with me on LinkedIn

